E. Fabri novembre 2020

Curva minima

Problema e definizioni

Determinare nel piano la curva di lunghezza minima che interseca tutte le rette che distano meno di 1 da un dato punto O. La curva può anche consistere di archi disconnessi.

Esista una soluzione con l < 4.82, che chiamerò "soluzione standard." Dimostrerò che non è il minimo cercato.

La soluzione standard

Con riferimento alla prima figura, N e Z sono due estremi di un diametro verticale. I punti A, B, C, D, A', B', C' sono definiti come segue. A e C sono punti di tangenza alla circonferenza \mathcal{C} ; le tangenti s'incontrano in B. I punti con apice sono i simmetrici di A, B, C, rispetto alla retta NZ. D sta su NZ ed è l'intersezione di BC e B'C'. M è il punto medio di BB' e sta sull'asse di simmetria.

I segmenti AB e BC sono visti dal centro O sotto l'angolo α ; CD è visto sotto l'angolo γ . La curva consiste dell'arco di circonf. ANA' e dei segmenti AB, A'B', DM. La sua lunghezza è

$$l = 2(\pi - 2\alpha - \gamma) + 2 \operatorname{tg} \alpha + (\operatorname{tg} \alpha + \operatorname{tg} \gamma) \sin \gamma.$$

Cerchiamo, nell'intervallo $[0,\pi/3]$, i valori di α e γ che minimizzano l. Un calcolo col metodo del simplesso mi dà:

$$\alpha = 0.643255628$$
 $\gamma = 0.595523920$ $l_{\min} = 4.818926456$.

Ampliamento della soluzione standard

Consiste nell'uso di due segmenti sconnessi al posto di uno, abbandonando anche la simmetria. Inltre i due segmenti non sono più radiali.

Nella seconda figura il segmento AB è visto da O sotto l'angolo α , mentre H I è visto sotto l'angolo δ , che può essere diverso da α . Il punto F si trova sulla tangente a \mathcal{C} da H, ma a distanza dal punto di contatto G diversa da H; quindi l'angolo γ sotto cui FG è visto da O può differire da δ . Da F parte uno scavo perpendicolare alla trasversale BH, che raggiunge in F'.

Le tangenti da B e da F s'incontrano in D; i segmenti CD e DE, tra loro uguali, sono visti da O sotto l'angolo β . Da D parte uno scavo perpendicolare alla trasversale BF, che raggiunge in D'.

Attenzione! Nella figura il punto D' appare quasi allineato con O e D. Lo sarebbe se fosse $\alpha = \gamma$: BDF e OBF sarebbero isosceli e D' sarebbe il punto medio di BF.

Si vede dunque che ci sono 4 parametri indipendenti: gli angoli α , β , γ , δ . La lunghezza totale dello scavo è

$$l = 2(\pi - \alpha - \beta - \gamma - \delta) + \operatorname{tg} \alpha + \operatorname{tg} \delta + \overline{\mathrm{DD}}' + \overline{\mathrm{FF}}'$$

e restano da calcolare gli ultimi due segmenti: il calcolo si trova in Appendice. Con le (A.4), (A.5) abbiamo le espressioni cercate e quindi la funzione da usare per la ricerca del minimo.

Un calcolo col metodo del simplesso mi dà:

$$\alpha = 0.602123129$$
 $\beta = 0.336991434$ $\gamma = 0.520407653$ $\delta = 0.490782127$

e per la lunghezza minima

$$l_{\min} = 4.799849375.$$

Nota 1: la soluzione standard è un caso particolare di questo ampliamento, con $\beta = 0$, $\alpha = \delta$. Infatti si ha $\overline{DD}' = 0$,

$$\overline{FF'} = \frac{\cos\alpha \left(\operatorname{tg}\alpha + \operatorname{tg}\gamma\right) \left(\cos\alpha - \cos(\alpha + 2\gamma)\right)}{\sqrt{2\cos^2\alpha \left(1 - 2\cos\alpha + 2\cos\gamma\right)}} = \left(\operatorname{tg}\alpha + \operatorname{tg}\gamma\right) \sin\gamma.$$

Nota 3: le figure sono disegnate coi valori degli angoli che danno il minimo per l.

Tutto lascia credere che la soluzione trovata possa essere ancora migliorata, ma qui non andrò oltre.

Appendice

Nel triangolo OBF gli angoli sono rispettivamente:

$$\hat{\mathcal{O}} = \lambda = \alpha + 2\,\beta + \gamma \qquad \hat{\mathcal{B}} = \mu \qquad \hat{\mathcal{F}} = \nu$$

con μ , ν per ora incogniti. Analogamente in OBH:

$$\hat{O} = \varphi = \alpha + 2\beta + 2\gamma + \delta$$
 $\hat{B} = \chi$ $\hat{H} = \psi$

con χ , ψ incogniti.

Sarebbe poi:

$$\overline{DD}' = \overline{BD} \sin(\pi/2 - \alpha - \mu) = (\operatorname{tg} \alpha + \operatorname{tg} \beta) \cos(\alpha + \mu). \tag{A.1}$$

Dal teorema dei seni per il triangolo OBF si ha

$$\cos \gamma \sin \mu = \cos \alpha \sin \nu = \cos \alpha \sin(\lambda + \mu)$$

da cui, sviluppando e semplificando:

$$tg \mu = \frac{\cos \alpha \sin \lambda}{\cos \gamma - \cos \alpha \cos \lambda}.$$
 (A.2)

La (A.1) si può scrivere

$$\overline{DD}' = \cos \alpha \, \cos \mu \, (\operatorname{tg} \alpha + \operatorname{tg} \beta) \, (1 - \operatorname{tg} \alpha \, \operatorname{tg} \mu). \tag{A.3}$$

Dalla (A.2):

$$1 - \operatorname{tg} \alpha \operatorname{tg} \mu = \frac{\cos \gamma - \cos(\lambda - \alpha)}{\cos \gamma - \cos \alpha \cos \lambda}$$

e sostituendo nella (A.3)

$$\overline{DD}' = \cos \alpha \, \cos \mu \, (\operatorname{tg} \alpha + \operatorname{tg} \beta) \, \frac{\cos \gamma - \cos(\lambda - \alpha)}{\cos \gamma - \cos \alpha \, \cos \lambda}.$$

In questa si può eliminare $\cos \mu$ ricordando l'identità $\cos \mu = 1/\sqrt{1+tg^2\mu}$:

$$\overline{DD'} = \frac{\cos\alpha (\operatorname{tg}\alpha + \operatorname{tg}\beta)}{\sqrt{1 + \frac{\cos^2\alpha \sin^2\lambda}{(\cos\gamma - \cos\alpha \cos\lambda)^2}}} \frac{\cos\gamma - \cos(\lambda - \alpha)}{\cos\gamma - \cos\alpha \cos\lambda}
= \frac{\cos\alpha (\operatorname{tg}\alpha + \operatorname{tg}\beta) [\cos\gamma - \cos(\lambda - \alpha)]}{\sqrt{\cos^2\alpha + \cos^2\gamma - 2\cos\alpha \cos\gamma \cos\lambda}}$$
(A.4)

In modo del tutto analogo:

$$\overline{FF}' = \cos \delta \, \cos \psi (\operatorname{tg} \gamma + \operatorname{tg} \delta) (1 - \operatorname{tg} \delta \, \operatorname{tg} \psi)$$

Dal triangolo OBH

$$\cos \alpha \sin \psi = \cos \delta \sin(\varphi + \psi)$$

$$tg \psi = \frac{\cos \delta \sin \varphi}{\cos \alpha - \cos \delta \cos \varphi}$$

e poi

$$\overline{FF'} = \frac{\cos \delta (\operatorname{tg} \gamma + \operatorname{tg} \delta) [\cos \alpha - \cos(\varphi - \delta)]}{\sqrt{\cos^2 \alpha + \cos^2 \delta - 2 \cos \alpha \cos \delta \cos \varphi}}.$$
(A.5)

